KarL05/Aiyiyi's Blog
Linear Alegebra Chapter 1,2,6 Study Notes

高等代数学 Chapter 1,2,6

Theorem 1.7.1

Laplace Theorem

\[ \det (A) = \sum_{\text{fix i or j}} A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_i & j_2 & \cdots & j_k \end{pmatrix} \hat{A} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_i & j_2 & \cdots & j_k \end{pmatrix} \]

where

\[ A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_i & j_2 & \cdots & j_k \end{pmatrix} = \text{keep row i and column j}\]

\[ A\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_i & j_2 & \cdots & j_k \end{pmatrix} = (-1)^{\sum i+j}\text{remove row i and column j}\]

helpful to calculate det for matrix that have alot of zeros

helpful to deduce an algebric expression of something

Theorem 2.7.1

Cauchy-Binet Theorem

\[\det(AB) = \sum_{j}A\begin{pmatrix} 1 & 2 & \cdots & m \\ j_i & j_2 & \cdots & j_m \end{pmatrix} B \begin{pmatrix} j_i & j_2 & \cdots & j_m \\ 1 & 2 & \cdots & m \end{pmatrix} \]

This means find the common length of matrix A and B. And Iterate all possible choices of the other dimension.

Definition 4.3.1

if

\[ B = P^{-1}AP\]

then \[B \sim A\]

Finding a good similar matrix

let P be an array of eigenvectors \[ P = (v_1,v_2,\cdots,v_n) \]

then

\[P^{-1}AP = \text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n)\]

\[AP = P\text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n)\]

\[AP = \text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n)P\]

so all matrix in this equation have a good shape

Step by Step method:

  1. Find the eigenvalues

  2. Find the eigenvectors

  3. Match the eigenvalues with eigenvectors

  4. \(P\) is eigenvectors, \(P^{-1}AP\) is eigenvalues

Exercise

Find \(A^{10}\)

\[ A =\begin{pmatrix} 1 & 0 \\ 1 & -2 \end{pmatrix} \]

\[ |A-\lambda I| = \begin{pmatrix} 1-\lambda & 0 \\ 1 & -2-\lambda \end{pmatrix} = 0\]

\[ (1-\lambda)(-2-\lambda)=0\]

\[ \lambda_1 = 1, \lambda_2 = -2\]

Step 1.

\[P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}\]

\[\begin{pmatrix} 0 & 0 \\ 1 & -3 \end{pmatrix}v_1=0\]

\[v_1 = (3,-1)^{T}\]

\[\begin{pmatrix} 3 & 0 \\ 1 & 0 \end{pmatrix}v_2=0\]

\[v_1 = (0,114514)^{T}\]

Step 2. \[ P = \begin{pmatrix} 3 & 0 \\ -1 & 1 \end{pmatrix}\]

\[A^{10} = P(P^{-1}AP)^{10}P^{-1} = \begin{pmatrix} 1 & 0 \\ 1-2^{10} & 2^{10} \end{pmatrix} \]

Theorem 6.3.1

Cayley-Hamilton Theorem

let the eigenvalues of matrix A form

\[f(x) = \prod_{i=1}^n (\lambda_i-x)\]

then

\[f(A) = O\]

Proofing this consider an upper triangular Matrix B that is similar to A